LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – PHYSICS SECOND SEMESTER – APRIL 2010

PH 2500 - MECHANICS & SOUND

Date & Time: 20/04/2010 / 1:00 - 4:00	Dept. No.	Max. : 100 Marks
Date & 111116. 20/0 1/2010 / 1:00 1:00	Dopt. 140.	IVIAN 100 IVIAINO

PART A

(10x 2 m = 20 m)

- 1) Draw the velocity-time graph of a particle dropped from a certain height 'h', taking the downward direction as positive.
- 2) State the theorem of parallel axes of moment of inertia.
- 3) State the conditions of equilibrium for concurrent forces acting on a body.
- 4) Define the term 'meta centre'.
- 5) What are holonomic constraints of a system?
- 6) Define phase space.
- 7) Write down expression for the velocity of simple harmonic motion.
- 8) How do pressure and temperature affect the speed of sound wave in air medium?
- 9) What is Piezo-electric effect?
- 10) List any two applications of ultrasonic sound wave.

PART B

 $(4 \times 7 \frac{1}{2} \text{ m} = 30 \text{ m})$

Answer any FOUR questions

- 11) Derive expressions for time of flight, maximum height attained and the horizontal range of a particle projected with velocity u at an angle of elevation θ . (2 m+ 2 m + 2 ½ m)
- 12) Determine the centre of gravities (a) of solid cone and

(b) of solid hemisphere. $(4m + 3 \frac{1}{2} m)$

- 13) Derive the Hamilton's canonical equations of motion.
- 14) Two simple harmonic motions of equal amplitude and perpendicular to each other superimpose. Find the resultant motion (a) with a phase difference $\varphi = 0$ and (b) with a phase difference $\varphi = \pi/2$. (4½ m+ 1 m+ 2 m)
- 15) State and explain any four conditions for good acoustic design of a room.

PART C

 $(4 \times 12 \frac{1}{2} \text{ m} = 50 \text{ m})$

Answer any FOUR questions

- 16) (a) Obtain an expression for the moment of inertia of a solid sphere about any diameter.
 - (b) Derive an expression for the acceleration of body rolling down an inclined plane without slipping $(6 \frac{1}{2} \text{ m} + 6 \text{ m})$
- 17) (a) Derive Bernoulli's equation of fluid dynamics.
 - (b) Obtain an expression for the velocity of efflux.

 $(6 \frac{1}{2} \text{ m} + 6 \text{ m})$

- 18) Apply Lagrange's equation to (a) simple pendulum and (b) Atwood machine to obtain the equations of motion. (5 m + $7 \frac{1}{2}$ m)
- 19) What are beats? Obtain expression for beat frequency. Explain how you would demonstrate the phenomenon of beats in laboratory. (2 m+ 6 ½ m+ 4 m)
- 20) State and explain Sabine's law. Obtain an expression for the reverberation time.

 $(2 m+6 \frac{1}{2} m+4 m)$
